When collecting protein-ligand binding data using a technique such as Biolayer Interferometry (BLI) or Surface Plasmon Resonance (SPR), it is useful to simulate binding curves to help optimise your experiments. After initial binding parameters are known, binding curves can be simulated and parameters such as: analyte concentration, time of association, dissociation etc. can be varied. The models within this package may also be used to fit a curve to measured binding data using a non-linear regression.
Currently, two binding models are included with this package:
Usage: binding1to1(t, t0, conc, kon, koff, rmax)
$$Response = \frac{[A]R_{max}}{[A] + K_{D}}(1 - e^{-(K_{on}[A] + K_{off})t})$$
Parameters:
library(pbm)
time <- seq(0, 1000)
response <- binding1to1(time, 500, 6e-7, 10000, 0.01, 0.8)
plot(time, response, type = "l")
library(pbm)
time <- seq(0, 1000)
response <- binding2to1(time, 500, 6e-7, 10000, 0.01, 0.5, 2500, 0.001, 0.3)
plot(time, response, type = "l")
library(pbm)
# Generate example binding data with noise
time <- seq(0, 1000)
response <- binding2to1(time, 500, 6e-7, 10000, 0.01, 0.5, 2500, 0.001, 0.3)
noisyresponse <- jitter(response, amount = 0.02)
data <- data.frame(time, noisyresponse)
names(data) <- c("x", "y")
# Fit a nlm to binding data
startingvalues <- list(kon1 = 70000, koff1 = 0.01, rmax1 = 0.3, kon2 = 9000, koff2 = 0.004, rmax2 = 0.3)
fit <- nls(y ~ binding2to1(x, 500, 6e-7, kon1, koff1, rmax1, kon2, koff2, rmax2),
data = data,
start = startingvalues)
# Plot the fitted model
plot(data$x, data$y, type = "p", pch = 4, cex = 0.5)
par(col = "red", lwd = 3)
lines(data$x, predict(fit, list(x = data$x)))
Parameters predicted from fitted model:
kon1 | koff1 | rmax1 | kon2 | koff2 | rmax2 |
---|---|---|---|---|---|
9637.591 | 0.0098941 | 0.5003437 | 3412.107 | 0.001034 | 0.2475318 |
When collecting data, it is recommended to allow the associtaion to
reach equilibrium. The command tteq()
, by default, returns
the time taken to reach 95% equilibrium. See below for an example
usage.
# Choose a range of analyte concentrations and give known parameters.
conc_range <- c(6e-7, 3e-7, 1.75e-7, 8.75e-8, 2.916e-8)
kon <- 10000
koff <- 0.01
# Calculate the time to equilibrium for each concentration.
tteq(conc_range, kon, koff)
#> [1] 187.2333 230.4409 254.9559 275.4696 291.0852
Now we can see that our time to equilibrium for the given concentrations ranges from 187 seconds to 291 seconds. Given these values we can see the difference using calculated data. Below are curves for the given parameters with two different association times.
library(ggplot2)
library(gridExtra)
t <- seq(0, 300)
t0 <- median(t)
plot1 <- ggplot()
for (conc in conc_range) {
curve <- binding1to1(t, t0, conc, 10000, 0.01, 1)
plot1 <- plot1 + geom_line(aes_string(x = t, y = curve))
}
#> Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
#> ℹ Please use tidy evaluation idioms with `aes()`.
#> ℹ See also `vignette("ggplot2-in-packages")` for more information.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
t <- seq(0, 600)
t0 <- median(t)
plot2 <- ggplot()
for (conc in conc_range) {
curve <- binding1to1(t, t0, conc, 10000, 0.01, 1)
plot2 <- plot2 + geom_line(aes_string(x = t, y = curve))
}
plot1 <- plot1+labs(x = "Time (s), t0 = 150")
plot1 <- plot1+labs(y = "Response")
plot2 <- plot2+labs(x = "Time (s), t0 = 300")
plot2 <- plot2+labs(y = "Response")
grid.arrange(plot1, plot2, ncol = 2)